
One Measurement Science

Multiple Form-Factors

Gustaaf Sutorius

Application Engineer

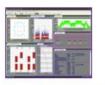
Agilent Technologies

AGENDA & Objectives

- 1. Name Change: Agilent => Keysight
- 2. Same Measurement Science, Different Form Factors.
 - a) Both PXI and Benchtop
 - b) Short demonstration PXI and Benchtop
- 3. AXEi: AXEi vs PXI
- 4. Morphable aspects Benchtop Instruments
- 5. Conclusion

AGENDA

- 1. Introduction
- 2. Name Change: Agilent => Keysight
- 3. Same Measurement Science, Different Form Factors.
 - a) Why both PXI and BenchTop
 - b) Short demonstration PXI and BenchTop
- 4. AXEi: AXEi vs PXI
- 5. Morphable aspects Benchtop Instruments
- 6. Conclusion



Measurement Science Along the Product Life Cycle

Electronic system design software

Vector signal analysis software

Signal Analyzers with a variety of wireless Measurement Apps

Signal Generators with Signal Studio software

.... 0. 0. 0.

Scopes and Logic Analyzers

LTE Signalling, RF, protocol and pre-conformance test platforms

Design Simulation Module and Chipset Development RF and BB Design Integration System Design Validation

Manufacturing Test

Battery Drain Test

Baseband generator and channel emulator

Interactive functional test SW

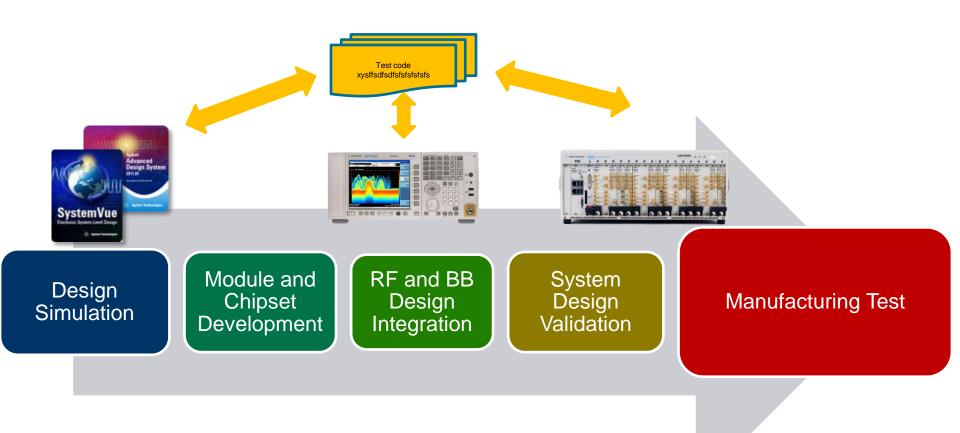
Widest bandwidth analysis for chipset design & verification

RF and Protocol Conformance test systems

Manufacturing test

solutions

RF Handheld Analyzers

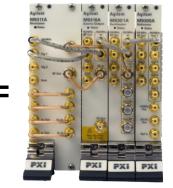


Code re-use: from R&D to Manufacturing

M9381A PXIe Vector Signal Generator

Agilent Performance MXG Vector Signal Generator in PXI

M9381A PXIe Vector Signal Generator M9380A PXIe CW Source



Key Features:

- Frequency range 1 MHz up to 3 or 6 GHz
- 160 MHz BW for emerging 802.11ac, (± 0.3 dB flatness)
- +19 dBm output power; ±0.4 dB level accuracy
- Class leading power, linearity & accuracy
- Frequency & Amplitude Switching Speed to within 1ppm
 - <220us, <10 us using baseband switching

Software:

Signal Studio, SFP, programming examples, drivers, lower-level software, SystemVue, MATLAB

M9381A PXIe VSG

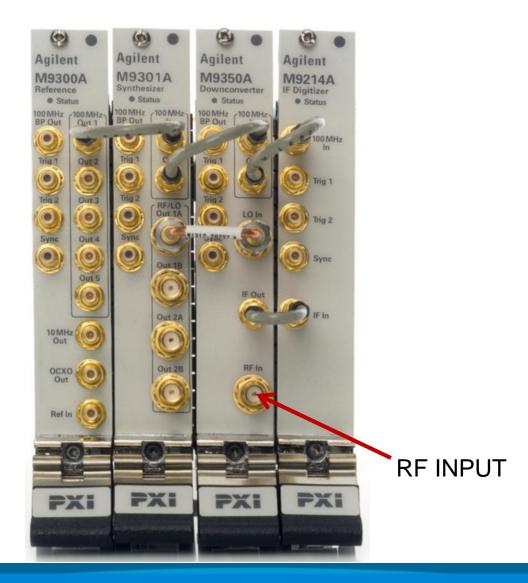
Bluetooth

Digital Video

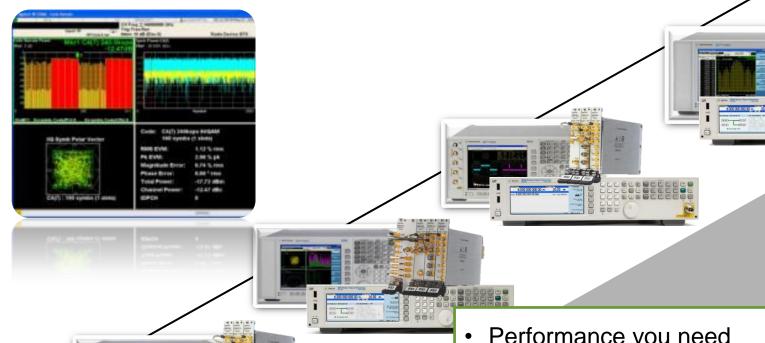
M9380A PXIe CW

Broadcast

Radio

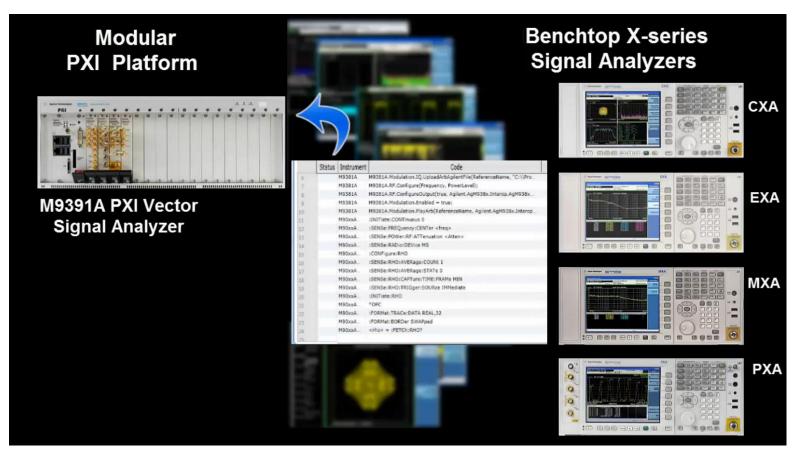

M9391A PXI Spectrum Analyzer: Benchtop in PXI format

Combination of high performance modules create uncompromising VSA performance in PXI


- M9350A Downconverter
- M9214A IF Digitizer
- M9301A Synthesizer
- M9300A Freq. Reference

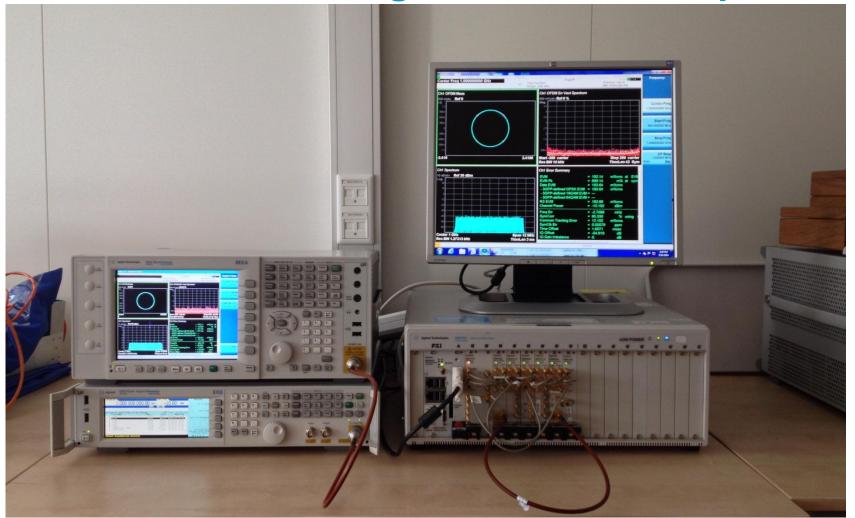
MXA Spectrum Analyzer MXA apps run also on PXI

RF Benchtop and PXI with X-Series Apps



- Performance you need
- Future ready
- Common UI
- **Common Application Software**
- Code compatible

One Measurement Framework between the Platforms



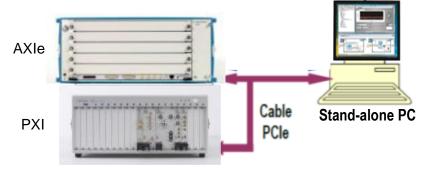
Example: Code re-use from Benchtop to PXI

Actual Demo: Unlocking on both Benchtop and PXI

One Measurement Science for 3GPP LTE applied for 10 MHz 50rb QPSK Uplink signal Unlocked on both Benchtop Instruments (left) and also PXI Instrumentation (right)

AGENDA

- 1. Introduction
- 2. Name Change: Agilent => Keysight
- 3. Same Measurement Science, Different Form Factors.
 - a) Why both PXI and BenchTop
 - b) Short demonstration
- 4. AXEi: AXEi vs PXI
- 5. Morph-able aspects of our Benchtop Instruments
- 6. Conclusion



AXIe versus PXI

Scalability and Compatibility

Common control via

- Rack mounted controller, or
- Embedded controller in chassis, or
- Desktop controller

AXIe and PXIe Comparison

Feature	AXIe	PXIe
Chassis base	AdvancedTCA	cPCI/cPCIe
PCIe maximum data bandwidth (Maximum Gen 2.0): Single peripheral slot to backplane All peripheral slots to system slot/embedded controller	2 GB/s 10 GB/s	4 GB/s 8 GB/s
PCIe fabric	Yes	Yes
LAN backplane	Yes	No
Local bus	18 pairs req 62 pairs opt	1 line (13 PXI)
Triggers	Bidirectional Star Trigger 13 signal MLVDS bus	Star Trigger(1xTTL, 3x Diff per slot) 8 Signal TTL bus
Frequency Reference & Sync	100MHz, yes	10MHz, 100MHz, yes
Power per slot	200 W	30 – 48 W
Board space per slot (higher density, flexibility)	900 cm ²	160 cm ²

AGENDA

- 1. Introduction
- 2. Name Change: Agilent => Keysight
- 3. Same Measurement Science, Different Form Factors.
 - a) Why both PXI and BenchTop
 - b) Short demonstration PXI and BenchTop
- 4. AXEi: AXEi vs PXI
- 5. Morphable aspects Benchtop Instruments
- 6. Conclusion

So PXI is like Lego?

- Not really
- PXI has however morphable aspects

Morphable Example

Robot

Becomes Locomotive

Morphable: Some Examples originating from VNA

PNA = VNA, SA, NFA, mixer-test, etc.

ENA = Gain-Phase, Z-Analyzer, VNA

FieldFox = Sig Gen, SA,VNA,VVM, etc

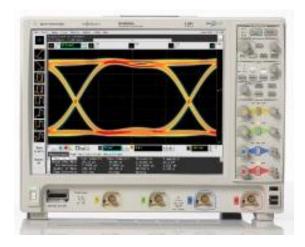
Morphable: Some Examples originating from SA/SS

Generic RF source

Morphs into a compliant Transmitter for GSM, LTE, UMTS, GPS, WiFi, DVB, DAB, Pulse, etc.

Generic Spectrum Analyzer

Morphs into an Analyzer for Noise Figure, Phase Noise, GSM, LTE, UMTS, WiFi, DVB, Bluetooth, EMI, Pulse, etc.



Morphable: Example Power Supply, Oscilloscope

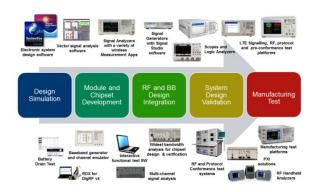
Morphs into a Arbitrary
Waveform Generator, 4
quadrant SMU, Oscilloscope,
Datalogger, etc.

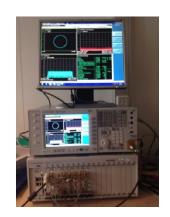
Generic Oscilloscope

Morphs into an Logic Analyzer Analyzer, Protocol Analyzer, USB Compliance Analyzer, PCI Compliance Analyzer, etc.

AGENDA

- 1. Introduction
- 2. Name Change: Agilent => Keysight
- 3. Same Measurement Science, Different Form Factors.
 - a) Why both PXI and BenchTop
 - b) Short demonstration PXI and BenchTop
- 4. AXEi: AXEi vs PXI
- 5. Morphable aspects Benchtop Instruments
- 6. Conclusion




Conclusion

One RF Measurement Science for Multiple Instrument Form Factors

 Same Measurement Science is applied on different T&M instruments along the Product Life Cycle.

- 2. Recently PXI has been added. Same algorithms/sw now run on both PXI and Benchtop Instruments.
- 3. Many Agilent Benchtop Instruments are morphable.

